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ABSTRAC1- 

A r-c,c, iteration of a Prikry type forcing notion is defined. Applications to the 
nonstat ionary ideal are given. 

§0. Introduction 

We define a ~<-c.c. iteration of a Prikry type forcing notion. Such iteration 

looks much easier when applied to problems connected with extending elemen- 
tary embeddings, than the Magidor iteration of the Prikry forcing [Ma 1]. Using 
this iteration, we define a natural forcing for changing cofinality of a cardinal 
without adding new bounded sets, which replace Mitchell's complete iteration 

and decoupling [Mi 2]. 
As an application, we prove the following two theorems. 

THEOREM I. A s s u m e  G.C.H.  Let  tx a regular cardinal and  for some K >-_ tx 

there exists a sequence of  normal ultrafilters on K 

Uo<U,< . . .<Uo<. . .  (a <ix') 

where ix' = ix + 1 if tx < K and IX' = K otherwise, 

so that Uo concentrates on the set {a < K Ic~ is c~++-strongly compact  (or 

a +-supercompact)}. 

Then there exists a forcing notion P so that in V e the following holds: 

(a) IX+=K i f i x < ~ ;  

(b) all the cardinals below (,u +)v and above K are preserved if IX < K, and g~ 

remains maccessib!e i]' K : I~ ; 
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(c) G.C.H; 

(d) NSK (the nonstationary ideal on K) is precipitous. 

Models with NS~ precipitous for K = N~,~ were previously known, see 

[J-Ma-Mi-P],  [G 2]. Also H. Woodin constructed a model with precipitous ideal 

over ~K (K ÷) whose projection to K is NS~, for an inaccessible K. By T. Jech [J 2], 

for/~ > ~:, if it is possible to drop the assumption that Uo concentrates on the set 

of {a < K I a is a*+-strongly compact or a is a+-supercompact} in the statement 

of Theorem I, then the equiconsistency result holds. 

Shortly after Theorem I was proved, M. Foreman, M. Magidor and S. Shelah 

[F-M-S] found another way of making NS~ precipitous. They proved that after 

collapsing a supercompact (or even a superstrong) cardinal to K + the NS~ 

became precipitous. It is unclear which initial assumption is weaker. Our feeling 

is that the method of Theorem I should give the equiconsistency result. 

THEOREM II. Assume G.C.H. Let K be a cardinal so that there exists a 

sequence of normal ultra filters on K 

U,< U,<. . .<  Uo <. . .  (~ <,~) 

s.t. Uo concentrates on the set {a < K I s  is a+-supercompactl. 

Then there exists a forcing notion P so that in V p the following holds: 

(a) K remains inaccessible; 

(b) G.CH. ;  

(c) there exists a stationary subset S of K so that 

(1) for every regular cardinal a < K, S N {fl < K [cof/3 = a} is stationary, 

(2) NS~ [ S (the nonstationary ideal restricted to S, i.e. the set of all A C K 

s.t. A G S is nonstationary) is K+-saturated. 

The following easily follows from Theorem II. 

COROLLARY. In V P, the forcing with NS~ [ S preserves all the cardinals, it does 

not add new bounded subsets to K, and for every regular a < K there exists a 

condition forcing "cf K = a " .  

Previously, H. Woodin starting from a measurable K constructed a model with 

NS~ r s K~-saturated for S C_ {a I a is regular}. By [Mi 21 we need at least a 

measurable K of the Mitchell order K for the conclusion of Theorem II. Once 

more we conjecture that the assumption, that U0 concentrates on the set 
i 

{a < K i c~ ts ~ -supercompact!, can be dropped in Theorem II. And so Ihe 

eq~iconsistency holds, it is ~mknowH if the full nonst~,~iouary ideal can be 

sataratcd .~ver a~: inaccessiNe. 
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The paper is organized as follows. In §1 we define a K-c.c. iteration of forcing 

notions satisfying the Prikry condition. In §2 the forcing for adding a sequence of 

order type o~.to is defined. It already contains the ideas needed for adding 

sequences of higher order type, which is done in §3. In §4 and §5 models for 

Theorems I and II are constructed. 

Our notations are quite standard. We refer to T. Jech's book [J 1] and the 

paper of A. Kanamori and M. Magidor [K-Ma] for basic definitions and notions. 

§1. K-c.c. iteration of forcing notions satisfying the Prikry condition 

Let (P, _-< ) be a forcing notion whose conditions are pairs of the form (p, A),  

where p is a finite sequence. Let us call a condition <q, 13) a Prikry extension of 

(p, A)  (or just P-extension) if (q, B) => (p, A)  (is stronger) and q = p. We say that 

(P, =<) has the Prikry property (or satisfies the Prikry condition) if for any 

(p ,A)  E P and a statement ~r of the forcing language there exists a Prikry 

extension (p, A')  of (p, A)  deciding or, i.e. (p, A ') IF ~r or (p, A')  I[- --n ~r. Notice that 

any forcing is isomorphic to the forcing of the above type. Just add the empty 

sequence to its conditions. 

We shall shrink the class of forcing notions we are interested in as follows. For 

(P, _<- ) as above and a cardinal a, let us say that (P, -<_ ) is a-weakly closed if for 

every increasing sequence ((p, B~)I/3 < y < a)  of elements of P there exists 
(p, B) E P stronger than every (p, B~), /3 < ~/. 

Clearly, every a-closed forcing satisfies the Prikry condition and it is a -weakly 
closed. But also the Prikry forcing, the supercompact and strongly compact 

Prikry forcings on a are such. For appropriate a, the Magidor and the Radin 

forcings, and the Magidor iteration of the Prikry forcing have these properties; 

see [Ma 2], [R], [Ma 1]. In §2, §3 we shall define other forcing notions of this 
type. By K. Prikry [P], an c~-weakly closed forcing having the Prikry property 
does not add new bounded subsets to ~. 

We are now going to define the iteration of forcing notions of such a kind. 

Let A be a set consisting of inaccessible cardinals. Denote  by A ~ the closure 

of the set A U{a  + l t a  ~ A } .  For every a E A  ~ define by induction ~ to be 

the set of all elements p of the form {(g~, A~) 1 7 E g}, where 

(1) g is a subset of a N A ;  

(2) g has an Easton support, i.e. for every inaccessible /3 =<a, /3>  
Idomg N/31; 

(3) for every 3' C dom g 

p [3' ={<g~,a~)[/3 ~ 3' N g } ~  3 ~, 
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and 

P l Y  I~-e~ "g~ is a finite sequence, (g~,A~) is a condition in a 
~-weakly closed forcing notion Q~ satisfying the Prikry condi- 
tion and if ~' is the least element of fit above ~, then 

loci__< 

Let p = ( g ~ , A , ) t 7  ~g} ,  q ={ (L ,B~) I7  E l }  be elements of ~ , .  Then p - > q  
(p is stronger than q) if the following holds: 

(1) g _D f; 

(2) for every 7 @ f 

p I 7 I~-~, "(fr, B~) ~ (gv, A~) in the forcing Q~"; 

(3) There exists a finite subset b of f so that for every y E f - b ,  

p 1 3, I1-~ " f ,  = g~". 

REMARK. The main difference between ~o and the Magidor iteration of the 
Prikry forcing [Ma 1] is that in N~, instead of the full support in the second 

coordinate, only the Easton support is allowed. We shall show that ~ still has 

most of the nice properties of the Magidor iteration and in addition it satisfies 

o~ -C.C. 

Let a ~ A  ~, p = { ( g ~ , A ~ ) l T E g } E ~ .  For f l E a f q A  ~, p [ /3=  
{(g~, A~) I y ~ fl (3 g} is a condition in ~ .  In the same fashion let us denote for 

every/3 < a by p [/3 the set {(g~, A~)[ 7 E/3 M g} and by ~ the set {p [/3 I p 
~ } .  Denote also by p-./3 the set {(g,,A~)17 E g \ / 3 } .  

DEFINITION 1.1. Let a E A '  and p = {(gv, Av) I 3, C g}, q = {fir, B,)t 3' E f} 
be elements of ~ , .  Then p is an Easton extension (or E-extension) of q (pe --> q) 

if p => q and for every 7 @ f, P [ 3 ~ Lt-e,~ "gv = f~". 
For an ordinal/3, p is an Easton extension of q above/3 if p _-> q and for every 

3, ~ f - ( / 3  +1), p f v II-~ "g~ =- L " .  

LEMMA 1.2. Let (p, , Io-</3)  be a sequence of elements of ~ so that 
P~, r (/3 + 1) = p~  [ (/3 + 1) and p¢, E>= p,,~ for every ~r~ >- ~r2. Then there exists 
p ~ ~ so that p I (/3 + l )= p~ I (/3 + l) and pw>= p~ for every ~r < /3. 

PROOF. Let PC = {(g~.~, A~.~)I 7 E g~} for ~r </3. Define g to be 
U{g~ ]o-</3}. The equality p ~ , t ( f l + l ) = p ~ I ( f l + l )  implies that g has an 
Easton support. For 3, E (/3 + 1) fq g all A,.~, g~.~ are the same. Set B~ = A~.o and 
l~ = g,.o, for such 7's. Define 

p I(/3 + 1)= ((f~, n , ) ]  3 /Edom g N(/3 + 1)}. 
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Continue the definition of p by induction. Suppose that for some r, p [ ~" is 

defined so that p [ ~-E >- p~ [ r (~r </3).  If there are now elements of g above ~-, 

then we are finished. Otherwise let 7 be min(g - ~'). Set p [ 7 = P I ~. Let p </3 

be the minimal s.t. Y ~ go- Then 

p T 7 IF~ "({g~,o, A~,~) I P =< o" ~ /3)  is an increasing sequence 

of conditions in a 7-weakly closed forcing notion Q , "  

So for some ~ < n a m e  B,, p [ 3' IF~, "{g,.o, B,) is stronger than every (g,,o, A,.~} 

(p < (r </3)" .  Set p [ (7 + 1) = p [ 7 U {{g,.0, B,)}. It completes the inductive 

definition. [] 

LEMMA ].3. Let e~ be a limit point of A. If c~ is a Mahlo cardinal, then ~ 

satisfies o~-c.c. 

The proof uses the standard A-system argument. 

LEMMA 1.4. Let c~ E At,  p E 3~ and cr be a statement in the forcing language 

appropriate for ~ .  Then there is an Easton extension p* of p deciding ~r, i.e. 

p*lk~ or p * lk --n (r. 

REMARK. The lemma is a weak analog of the Prikry condition for ~ .  

PROOF. Let p = {(g~,A,)l y E g} and /3 be the minimal element in g. We 
assume that g #  Q, otherwise simply replace p by some of its E-extension with 
g / ® .  

Let G be a generic subset of ~+~, so that p [/3 + 1 E G. We shall mean by 

p -, (/3 + 1) = {(g,, A,}I 7 E g - (/3 + 1)} the interpretation of it in V[G], i.e. an 

element in the forcing ~ / G .  Define now p* ~ o / G .  If there exists some 

q @ 3~/(3, an E-extension of p -, (/3 + I) deciding ~, then set p* to be some such 

q. Otherwise set p* p (/3+1). Then p* looks like { ( g , , A , ) l T E g * } ,  for 

some g * ~  V and ~ / G - n a m e s  g*,  A*. Let p* be a ~o+~-name of p*. We 

would like to turn p* into a condition. The problem is that different elements of 

~0+, can force g* to be different sets in V. But we can just take the union of all 

such possible sets. By the cardinalities assumption on A and ~+~, this union will 

still have an Easton support. 

So let us assume from the beginning that the set g* in p* is not a 

name of a subset of A, but it is really a subset of A. Then p* will look like 

{(g*, A*~) I y ~ g*} for some ~ - n a m e s  g* and A*. Also p [(/3 + 1)Up* will be 

a condition in ~ .  Clearly, it is an E-extension of p~ 

Let ~¢ be the statement "p* il or". Since ~ = p i 13 !F"Q~ satisfies the Prikry 
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condition", for some )o -name A 

Q~ I~-~ "(go, A~} [1 q~ and (go, A ~3} -> (go, An}". 

Define now a )o -name A** 0 • 

Let G be a generic subset of )0 .  If, in V[G}, (go, A ~ ) l k ~ ¢  then set 

A~* = A~3. Suppose now that (go,A ~)l~-qz Then let A~* be so that ( g o , A ~ * ) -  > _ 

(go, A ~} and (go, A ~*} decides "p* 1~- 00". Clearly, then (go, A ~*)ll- --7 (p* Ik 00) 

will imply that (go, A ~3"} Ik (p* Ik --1 00). 

Now, return to V and define 

p(1) = {{go, a ~*}} U p*. 

CLAIM 1.4.1. Let q be an E-extension of p(1) above/3, then q t~-'00 iff 

q I/3 U p ( l ) \ / 3  Ik'00 

where i ~ 2  and ° o'~-00, 'cr=---~ 00. 

PROOF. Let q be an E-extension of p(1) above/3 and q Ik 00. The case q Ik --7 00 

is the same. 

q I(fl + 1)1~-~+, (q-. (/3 + 1) is an E-extension of p \ (/3 + 1) and it forces tr). 

Then by the choice of p* 

q I(/3 4- 1)lk(p* forces 00). 

So q I/3 I~-.~ ((q0, Bo} I~-o~ (P* forces 00)) where (q0, B~) is the pair in q standing 

on the place /3. By the choice of (go, A~*}, then 

Hence 

q r/3 I~-,~ ((go, A~*)I~-,)~ (p* forces 00)). 

q T/3 U p(1) -~/3 I~- 00. [] of the claim. 

Let us define now an increasing continuous sequence of ordinals 

(/3(o°)10 < 00 _-< r/) and an E-increasing sequence {P(00)1 00 -<- r/} of elements of 
3a, so that 

(1) for every q => p(00 + 1) which is an E-extension of p(o- + 1) above/3(00 + 1) 

q Ik~r if[ 

q r/3(6 + 1) U p(~ + 1) \ /3(~  + 1)IV 00 

where i E 2  and o00 ~ 00, 100 ~ 0 0 ;  

(2) p(~ + 1)I/3(~ + 1) = p(~)r l3(3 + 1); 
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(3) p(8)={(g(6),A~(6))] for some g(6)C_A and ~ , -names  g~((3), 

A~ ((3), y E g((3)}; 

(4) for a limit (3 

g((3) = U{g(a ')[  (3' < (3}; 

(5) r/ is the least ordinal (3 so that g((3)= {/3((3')[ (3 _-> 6', (3' is a successor 

ordinal}; 

(6) if 1 < (3 + 1 < rt, then 

13((3 + 1) = min(g((3)-  (13((3)+ 1)). 

Set p(0) = p and/3 (1) = 13. p(1) is already defined and by Claim 1.4.1 it satisfies 

(1). 

Suppose now that the sequences (13((3')[0< (3'<6} and (p((3')l (3 '<6)  are 

defined. Assume that (3 =< r/, i.e. there is no s ~ < (3 satisfying (5). Otherwise we are 

done. 

CLAIM 1.4.2. For every limit ~ < (3, 13 (~) is singular. 

PROOV. Suppose otherwise. Then 13(~:) = ~:, since the sequence (13((3') t (3'< s c) 

is increasing and continuous. But g({:) = U{g((3')l 6' < ~} and by (5), (6) g(~) 

contains the set { 1 3 ( 8 ' + 1 ) [ 6 ' < s  ¢} of cardinality sq It is impossible, since 

p(~) ~ ~,, and hence for the regular cardinal ~:, I g(~:) O s~l < s ~. []  of the claim. 

CLAIM 1.4.3. For every ~ < (3, g(~)-(13(,~:)+ 1 ) ~ O .  

PROOF. Since s c < 6 <= rt, by (5), (6) 

g(~)~{13(6' + 1)[ 6 ' <  ~}. 

Pick some y E g(,~:)-{13((3' + 1)1 a ' <  ~:}. 
Let us show that y>13(~) .  Suppose otherwise. Then y<13(sc), by its 

definition if ~ is a successor ordinal, or by Claim 1.4.2 if ~ is a limit one, Pick the 

minimal ~ ' < ~  so that 13({: ' )~y<13(s~ '+l) .  As above y~13(s¢'). By (6), 

13(~' + 1) = min(g(~ ' ) -  (13(~') + 1)). Hence y ~  g(~'). But (2) implies that 

g(U) N 13(U+ 1)= g ( U +  1)n  13(~' + l) . . . . .  g(~:) N 13(~:' + 1). 

Hence y E  g(~:). Contradiction. []  of the claim 

Suppose first that (3 = ~: + 1. Then g (~ ) - (13 (~ )+  1)~  O, by Claim 1.4.3, and 
we define 13((3) as in (6)..Define now p((3) in the same fashion as p(1) was 

defined. 
Suppose that (3 is a limit ordinal. Define g(6) = [,.,l{g((3') I (5' < (3}. 
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CLAIM 1.4.4. For every inaccessible cardinal A, I g(6)  N A I < A and 

{/3(6') I 6' _-< 6} N A is bounded in A. 

PROOF. Let us show first that {/3(6')1 6' _<- 6} N A cannot be unbounded in A. 

Suppose otherwise. Then, since g(6) D {/3(6'+ 1)1 6' < 6}, I g(6) N A ] = A. 
Let c(6 ' )= U ( g ( 6 ' ) n  A) for 6 ' <  6. Then c is a nondecreasing continuous 

function whose range is unbounded in A. 

Let ~ = {6 '<  6 I/3(6') < A}. Then by Claim 1.4.2, ~ = 6. Hence (/3(6'){ 6 ' <  6) 

is an increasing continuous sequence unbounded in A. So there exists a limit 

ordinal 6,, < A such that 6,, = c (6,,) =/3 (60). Then /3 (60 + 1) = 

rain(g(6,,) - (& + 1)) > h. Contradiction. Hence {/3(6') 1 6' _<- 6} N A is bounded in 

A. 

Let 6o={6 '<61 /3 (6 ' )<A} .  Clearly 6,,<A. If 6,,=6, then I g ( 6 ) N A I < A ,  
since I g(~) N A ] < A for every c < 6 and g(6) = O{g(~:) I ~: < 6}. Suppose that 

60 < 6. Then 

[3 (60 + 1) = min(g(6,,) - (/3 (6o) + 1)) > A. 

Now (2) implies that g(6,,)n/3(6,,+ 1) = g ( 6 ) O / 3 ( 6 , +  1). Hence g ( 6 ) n  A C 
/3(60)+ 1 < A. [] of the claim 

Now let us define p(6). Let q ~ ~1~) be so that q [ /3(6 '+  1) = p(6')  [ /3(6 '+  1) 

for every 6 ' < 6 .  By (2) such q exists. Set p ' ( 6 ' ) = q N p ( 6 ' ) \ / 3 ( 6 ) .  Then 

(p'(6')1 6 ' <  6) is an E-increasing sequence so that p ' (6 ' ) I ( /3 (6)+  1 ) = q  for 

every 6 ' < 6 .  Let p E ~  be as in Lemma 1.3. Then p I ( / 3 ( 6 ) + l ) = q  and 

p E>= p'(6') for every 6' < 6. 
Set p(6) = p. It completes the construction of the sequences (/3(6) [ 0 < ,5 =< 7/) 

and (p(6)] 6 =< n). 
= * * E g*}. If there exists some E- Set now p * = p ~ .  Let p* / (g~ ,A~)]Y 

extension of p* deciding 0, then we are done. Suppose otherwise. Let q => p* be 

a condition deciding o. Let q -- {(/~, B~) ] y E f}. 
By the definition of the extension there exists a finite subset b of g* so that for 

every "g E g* - b 

q r " L  = g ; "  

Denote by y(q)  the maximal element of b. 
Pick a condition s _->p* deciding o with -,/(s) the minimal possible. Since 

7 ( s ) ~  g*, by (5), y(s)  = [3(6 + 1) for some 6 < "r/. clearly, s is an E-extension of 

p* above y(s).  So, by (1) 

s, = s r/3(6 + 1.) u p* .../3(6 + 1)11o. 
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But 7(s~) is clearly less than 7(s). Contradiction. It completes the proof of the 
l e m m a .  

Notice, that already s I/3(1) U p* I[ or. [] 

LEMMA 1.5. Let a be a limit point of A.  Suppose that 2 ~ =  a+, a is a 

measurable cardinal and there exists a normal ultra filter U on a so that 

A D a if_ U. Then U extends in V ~'' to a normal ultra filter. 

PROOF. Let j: V-~  N = V ~ / U  be the canonical elementary embedding. Let 

(A, [ 7 < a +x; be an enumeration of all canonical ~ - n a m e s  of subsets of o~. 

Pick G a generic subset of ~ .  By the definition of ~,,, i f (G)  = G. Define by 

induction an E-increasing sequence (p, ]Y < a)  of elements of .~n~/G so that 

for every 7 < a ~, p,~. IId~ E j (A, ) .  Every initial segment of the sequence will lie 

in N[G].  On successor stages let us apply Lemma 1.4 and on limit, Lemma 1.2. 

Note that a q E j ( A )  and so every forcing notion in the iteration ~;(~)/G is 

c~+-weakly closed. 

Define now an ultrafilter U' in V[G] as follows. For A C_ K set A E U' if for 

some Y < a*, some ~ - n a m e  A of A in N[G]  

p~ IF;u,~/c ~ ~ j ( A ) .  

Since j"(G) = G, the definition really does not depend on a particular name of 

A. The checking that U' is a normal ultrafilter extending U is standard. [] 

The next lemma follows from Lemmas 1.2, 1.3 and 1.4. 

LEMMA 1.6. Let a Mahto cardinal a be a limit point of A.  Then for every 

/3 >= o~, a remains a cardinal in V:*~. 

By stengthening assumptions on Q,,'s (c~ E A)  it is possible to say much more 

about preserving cardinals. For example, if Q IF:~.. "[ Q~ [ < 6~'" for every a E A, 

where a '  is the least element of A above c~ (if there is any), then all elements of 

A will remain cardinals. 

Let us describe briefly another way of iterating weakly closed forcing notions 

satisfying the Prikry condition. We shall shrink the class of allowed O,~'s. But it 

really will cover most of the applications below. 

Define ~ to be all p of the form {(g~, A~ ] 7 ~ dom g}, where: 

(1) g is a partial Easton support function on a D A, i.e. for every inaccessible 

13 =<a,/3 > l d o m g  n/31;  
(2) for every 7 ~ d o m g ,  g ( 7 ) = g ~  is a finite sequence and p ]7 = 

{(g~, A~) ]/3 @ 7 D dom g}, 
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It-~ "(g~, A~) is a condition in a 3,-weakly closed forcing notion Q~ of 

cardinality 3" satisfying the Prikry condition, where 3" is the least 

element of A above 3' or if 3" is maximal in A, then 3, ' =  ~".  

Let p={(g~,A~)13"Edomg}, q ={(f~,B~)l 3' ~domf} be elements of ~ .  

Then p => q (p is stronger than q) if the following holds: 

(1) d o m g _ D d o m f ;  

(2) the number of 3"s in dora f, so that g ~ f , ,  is finite; 

(3) for every 3' E dom f 

p [ 3' 1~-2p~ "(f~, B~) <_- (~ ,  A~) in the forcing Q~". 

Let /3 < a. Denote 

~ e  = {p E ~,, I P is of the form {(g~, A~)] 3' E dom g}, where A~ 

does not depend on ~ for every 3' E dom g \/3}. 

Suppose that for every /3, ~,.~+~ is dense in ~ .  Under this assumption, 

Lemmas 1.2-1.5 can be proved in the present situation. 

Such defined iteration can be used in §§2-4 but it is not good for the 

construction of a model with NS. IS-saturated. 

§2. Changing cofinalities without adding new bounded subsets: adding a 

sequence of the order type to • to 

We are going to define a forcing notion replacing Mitchell's complete iteration 

and decoupling [Mi 2]. We present first the simple case, adding a sequence of 
order type to • to. It will contain most of the ideas needed for the general case. 

Assume G.C.H. Let U(K,0), U(K, 1) be two normal ultrafilters on K so that 

U(K,0)<~ U(K, 1) (i.e. U(K,0) belongs to the ultrapower by U(~c, 1)). Fix a 
sequence of normal ultrafilters (U(/3,0)[/3 E A)  representing U(a ,0)  in the 

ultrapower, for some A C K, A ~ U(K, 1 ) - U ( u , 0 ) .  W.l.o.g. assume that for 

every /3 E A, A fq/3 ~ U(13, 0). 
In the first stage we shall change the cofinality of every a E A to to iterating 

the Prikry forcing. 

Set ~o+~ = the Prikry forcing with U(ao, 0) where ao is the least element of A. 

We refer to [P] or [K-Ma] or [J 1] for the definition and the properties of this 

forcing notion. 

If a is a limit point of A, then let ~ be the iteration defined in §1. Let a '  be 

the least element of A => a (if a ~  K). If a ' >  a then by Levy-Solovay [L-S] 

/ ] (a ' ,  O) = {X C_ ~' l  X E V ~o, there exists X' E U(a', O) X ~ X'} 
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is a normal ultrafilter on a '  in V :~'~. Set O~, to be the Prikry forcing with / ) ( a ' ,  0) 

and ~ ,  = 3°~ * O,,,. 
Suppose now that a '  = a, i.e. a E A is a limit point of A. Then by Lemma 1.5 

U(a, 0) extends to a normal ultrafilter in V *°. For our purpose we need to pick 

an extension of U(a,O) more carefully. Let us fix from the beginning some 

wellordering W of Va (the sets in V of rank < A) s.t. for every inaccessible 

/3<A 

wive: 
where 2~ is a cardinal much above all the cardinals we are dealing with. Now. the 

only changes we need in Lemma 1.5 are the following: Pick the sequence of all 

canonical )o -names  of subsets of c~ (A~ [7 < ~+) to be a jo(W)-least such 

sequence in No and for y < c~ + pick also p~ to be jo(W)-least, where j0: V--~ No = 

Let  D(a ,0 )  be such a defined ultrafilter. Set Q~ to be the Prikry forcing with 

/](a ,  0) and 9°~+1 = ~,~ * O~. 

The second stage is to define in V ~" a forcing notion adding to K a cofinal 

sequence of order type w • ~o without adding new bounded subsets of ~:. We shall 

first extend the ultrafilters U(K,O) and U(¢, 1) in V ~'. 

Let j~: V---~N~ ~ V~/U(K,i)  be the canonical elementary embedding, for 

i E 2 .  

Pick G C ~ as generic subset. Let D(K,0) be the normal ultrafilter extending 

U(K,0), defined as Lemma 1.5 using jo(W) in N0. Let D'(K,0) be the ultrafilter 

having the same definition as O(K,0) but defined in N~[G]. Note that U(a,O)E 
N~. 

LEMMA 2.1. U(a,  0) = U'(a,  0). 

PROOF. Let jo~: N~,---~ Nm = NI'ff)/jo(U(K, 1)) and j,¢ N~--~ N,,  = NdU(K, 1) 

be the canonical elementary embeddings. Then No, = N,o =jr N and the follow- 

ing diagram is commutative. 

V , IV,, 

J' 1 j,,, J j'" 
N~ ~ N 

The first ordinal moved by j,~ is j,,(K) and No N i"(~N C_ N. Hence 

j,,(j,(W))] V,,,,.," = jo,(j,(W))] Vi,,,.,N = jo(W) l V,,,,. ~'' ,. 
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So the minimal sequence (A~ f7 < K+) E No is also such for N. Clearly, 

j,,(K)=j,o(K). Also, ~Jo(K/ is the same forcing notion in No and N1 since 
V 0 = N ~j,,~) C_ Vj,,~) Vj,,(~). Hence U(a,  0) , / ) ' (a ,  0) have the same elements. []  

Let us define now the ultrafilter U(K, 1, t) extending U0¢, 1), for every finite 

increasing sequence t of ordinals less than K. 

In N~, 

and 3 ~ ,  = ~ * O,, where, by Lemma 2.1, @ is the Prikry forcing with U(K,0). 

Let (A~ t 3/< K+) be the j,(W)-least enumeration of all canonical ~ - n a m e s  of 

subsets of a. Using Lemmas 1.3, 1.4 define a sequence of ~ +~-name of elements 

of ~j , ( . ) /~+,  (p~ t Y < K+) so that 
(1) for limit Y < to+ 

]IP~ is the j~(W)-least E-extension of (p~. [ 3, '< 3,)11 ~ . . . .  1, 

(2) for every 3, < K + 

HP~+, is the j,(W)-least E-extension of p, deciding "s~ E jl(a )"ll . . . .  1. 

Work in V[G]. Define U(K, 1, t), for a finite sequence t of ordinals less than •, 

as follows: 

C ~ U(K, 1, t) 

B 

r u {(i, n)}  u i , (c),  

for some names C, B of C and B. 

if CC_K and for some r E G ,  Y <K~, 

in N~, 

LEMMA 2.2. U(K, 1, t) is a K-complete ultrafilter extending U(K, 1). 

PROOF. The definition of U(K, 1, t) does not depend on a particular name C 

for C, since by the definition of ~K j'[(G)= G. Also the definition is indepen- 

dent of the choice of B and its name B, since conditions (t, B~), (t, B2) are always 

compatible, namely (t, B, n B2) is stronger than both of them. 

Clearly, U(t¢, 1, t) ~ U(K, 1). 

Let us show that U(K, 1, t) is a K-complete ultrafilter. Let, for some a < K, 

g3 I~-~, "(Co I/3 < ~) is a sequence of subsets of K SO that U C~ = K". 
.B<ct  
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Then.  in N,, 

O IF~,,~., "'(1~(C~) [/3 < a )  is a sequence of subsets of j~(K) 

s o t h a t  1.3 jl(C,)=j~(K)". 
/3<c~ 

For  eve ry /3  < a there  are r E G and c~ < K + SO that r IF:~. C,  = A. , .  Let ,  in 

V[G], T = [.3~<. c~. Then  for every  /3 < c~ 

IIP'Y [I ~ ~ i1(C/3)II °-  = 1. 

Let  y be a ~ , - n a m e  of such defined in V[G] ordinal 3'. Since ~ ,  satisfies 

K-c.c. there  exists an ordinal  ~ < K + so that QIt-~ ~ => y. Hence  

I l p ~ l [ ~ j , ( c . ) l l  ~ . . . .  1, for  eve ry /3  < c~. 

Consider  in V[G] Q,-s ta tements  o s ---p~ I~-~ Ej~(C~) for  /3 < a. Then  there  

exists B E U ( a , 0 )  so that (t, B)  decides o-~ for every /3  < a. Then  there  is/3 < a 

s.t. 

(t, B)IFo. "p~ I ~  ~i,(G)". 

Hence for some r ~E G 

But then C~ E U(K, 1, t). [] 

Note  that U(a ,  1, t) is not normal  since the set A E U(c~, 1, t) and every /3  C A 

is of cofinality to in V[G]. But it follows by Baumgar tne r  [B] and L e m m a  1.3 

that  U(K, 1, t) contains all closed unbounded  subsets of K. 

It is also not hard to see that O{U(K, 1, t)[ t E [K] <~ } is a normal  K +-saturated 

filter over  K. 

A K-complete  ultrafilter containing all closed unbounded  subsets of K and 

concentra t ing on singular cardinals, and a K+-saturated normal  filter concentra t -  

ing on singular cardinals were  const ructed previously by Mitchell [Mi 2]. 

We are starting now to describe the forcing notion for adding an unbounded  

sequence to K of the order  type to • to. Work  in V[G]. Deno te  by b~, for /3  ~ A, 

the generic sequence  added to /3  by G, i.e. {/3} tJ {t I for  some r E .@~ f) G, some 

~ - n a m e  B r U {(i, B)} E G}. For  finite subset 77 C_ A, set b, = U{b~ ]/3 ~ ~}. 
Let  us call a finite increasing sequence  of ordinals (&, . . . . .  6, j) 2-coherent  if, 

for every  i < n so that 6, E A, {6i l i* <--j < i} is an initial segment  of b~, where  

i* =< i is the minimal so that for every  i* _-< j < i, 6j E A. 
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DEFINITION 2.5. A 2-tree T is a tree consisting of 2-coherent sequences so 

that for every "q ~ T the set of immediate successors of ~ in T, Suc~(~), is a 

union of two disjoint sets Suc~.0('q) and Suc~.,01) such that 

SucT.,,(~)E D(K,0) and Suc-r.l(~)E U(K,I ,  ~(1)), 

where for a 2-coherent sequence "~ = (&,, . . . ,  8, 1) 7(1) is the empty sequence, 

unless 8,, ~ ~ A. If 8n_ 1 ~ A, then let i* be the minimal i < n s.t. for every j _-> i, 

j < n, 6jf~ A.  Set r1(1):(6, . ,  . . . .  6,, ,). 
For an element rl of a 2-tree T, denote by T, the set of all v E T, v extends rl 

in T. 

Define now the forcing notion. 

DEFINITION 2.4. Let 3~(K,2) be the set of all pairs (t, T), where t is a 

2-coherent sequence and for some 2-tree T', s.t. t E T', t = T',. 

For (h, T~), (h, T2) in ~(K, 2), let (h, T2) >= (h, TO if there exists r / E  T, so that 

(a) b~ : b . ,  

(b) for every v ~ 7"2, r1~{6 E v I 6 > max "O} is an element of T~,. 

This defnit ion is motivated after the Prikry forcing (namely the strong 

compact version of it) [P] and the Magidor forcing [Ma 2]. 

Notice that the finite sequence t in a condition (t, T) provides really the 

information about the infinite sequence b,. We shall show in the next section in a 

more general situation that ~(K, 2) satisfies the Prikry condition. The complet- 

ness of the ultrafilters 0(K,0) and U(K, 1, t), t ~ [K] <~, implies that the forcing 
3~(K, 2) is ~c-weakly closed. So ~(t(, 2) will not add new bounded subsets to ~:. 

§3. Changing cofinalities without adding new bounded subsets: the general 

case 

Assume G.C.H. Let 0 be a coherent sequence of ultrafilters, i.e. a function 

with domain of the form 

{(a, fl) I a < l ° and 13 < 0°(a)} 

for an ordinal l °, the length of U, and a function 0°(a) ,  the order of O at a. For 

each pair (a,/3) E dora U, 

(1) U ( a , ~ )  is a normal ultrafilter on a, and 

(2) if j~: V--> N~--- V ~ / U ( a , ~ )  is the canonical embedding then 

i;(O)ra + 1 = O f(~,~3), 
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where 

O r = 0 < and/3'  < 0 ° 3} 

and 

¢ [(a,/3) = 0 [ {(a',/3') ] (a '  < a a n d / 3 ' <  O'-~(a')) or (a '  = a and/3 '</3)}.  

The notion of the coherent sequence of ultrafilters was introduced by Mitchell 

[Mi 1]. We refer to his papers [Mi 1], [Mi 3] for more details on this subject. 

Denote by d o m l / ]  the set of all a ' s  such that for some/3, (a,/3) E dom/ft. Let 

us assume that a ~ d o m ,  0 implies that OCJ(a)_-> 1. Assume also that for every 
a Edom,  0, OrJ(a)<~a. 

We are going to add a cofinal sequence to every a in dora, U. The order type 

of this sequence will depend on 0 c'(a). By induction on a 

closure(dotal U U {/3 + 1 t/3 ~ dOml U}), we shall define forcing notions @,~. @,~ 

will take care of adding cofinal sequences to every element of a N dom~ /3. For a 

a limit point of dom~/~, define @,, to be the iteration described in Section 1. If 

a ~dom~ 0 but it is not a limit point of dom~ U, then 0 ° ( a )  = 1 and the 

cardinality of the forcing below a is less than a. So, by Levy-Solovay [L-S], 

U(a, 0) generates the normal ultrafilter in the extension. Let @~ be the forcing 

below a. Set (~ to be the Prikry forcing with U(a, 0) in V ~*" and ~,,+~ = ~ * Q,,. 

Suppose now that a Cdom~ 0 is a limit point of dom~ U. Let us define the 

forcing notion O, we shall use on a. Let G be a generic subset of @,,. 

For /3 < a, /3 ~dom~ [fi denote by b~ the generic sequence added to /3, i.e. 

U{t I for some r @ ~ n G, some ~ name Tr  U {(~ T)} E G} U {/3}. For a finite 

sequence "q C dom~ 0 n a set b~ = I..J{b~ I/3 E 7/}. Fo r /3~  dom, U set b~ = {/3}. 

DEHNI~r~ON 3.1. Let /3 Gdom~ U N ( a  +1), 7_<--0u(/3). 

A finite increasing sequence (&, . . . . .  6, ~} of ordinals less than/3 is y-coherent 

if 

(1) 7 = 0 implies that (&, . . . . .  6,, L) is the empty sequence, 

(2) for every i < n, 0~(&)< 7, 

(3) for i < n ,  let i*<=i be the minimal s.t. for every L i*<=J <i,  0e(6J) < 

0°(6,). 
Then for every i < n, U{b,~ [i* <-_j < i} is an initial segment of b~,. 

The following lemma follows easily from the definition. 

LEMMA 3.2. Let~3, ybe  asin 3.1 and (6,, . . . . .  6, ,) bea y-coherentsequence. 
Then 

(a) (6,, . . . . .  6~) is a y-coherent sequence for every i < n, 
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(b) (&., . . . .  3,) is a y-coherent sequence for every i < n, 
(c) (3o . . . . .  3,)~(~o . . . . .  ~,,> is a y-coherent, where (~, , . . . ,~r,)  is 00(3,)  - 

coherent, 

(d) if y~ > y, then (&, . . . . .  &,) is y~-coherent. 

Notice that the 1-coherent sequences are exactly the finite increasing sequen- 

ces of ordinals of /Q-order 0. 

The next lemma is obvious. 

LEMMA 3.3. Let /3~</32 be elements of dom~/Q. Suppose that y<-_ 

rain(0~) (/30, 0° (/3:)). Then every y-coherent sequence for [3, is also y-coherent for 

/3._. 

For every/3 ~ domt 0 N (c~ + 1), y _-< 0c~(/3) and a y-coherent sequence t for 

/3, we shall define a forcing notion ~(/3, y)  and, for y < 0e(/3), a set U(/3, y, t) 

which, as will be shown later, will be a/3-complete ultrafilter extending U(fl, y). 

Let us fix /3. Suppose that (~(/3, y ' ) l y ' <  y) and (U(/3, y ' , t ) l  y ' <  y, t is a 

y'-coherent sequence for /3} are defined. Define first ~(/3, y)  and then, if 
y <0c'(/3), U(/3, y, t), for a y-coherent sequence t. 

Set ~ ( / 3 , 0 ) = ~ .  Define ~(/3, y ) f o r  y > 0 .  

For a y-coherent sequence r / =  (~'0 . . . .  , I", ~ ~} and y '  < y, let us denote by r/(y') 

the empty sequence, if 0~0", ~)>_- y'  or, otherwise, the sequence (~-~,..., 1"n--~) for 

i the least s.t. for every j, i = j  < n, 0c~(~5) < y'. Clearly, rt(y') is a y'-coherent 

sequence. 

If for some y-coherent sequence rl, some y'  < y, 

{8 </3 I rl~(8) is y-coherent} ~ U(/3, y', "0 (Y')), 

then set ~(/3, y)  = Q. Suppose otherwise, i.e. for every y-coherent sequence "q, 

every y'  < y, 

{3 </3 I Bn(8) is a y-coherent sequence} ~ U(/3, y', rl(y')). 

DEFmmON 3.4. A y-tree is a tree consisting of y-coherent sequences so that 

for every rl C T, 

Suc~(n): U SucT~(n), 
y'<,y 

where SucT,~.('O) is a set in U(/3, y', "0(Y')). 

REMARK. The tree of all y-coherent sequences'is a y-tree. 

For an element -q of a y-tree T denote 
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7", = {v E T I v extends "0 in T}. 

DEFINIaqON 3.5. ~(/3, 3') is the set of all pairs (t, T), where t is a "),-coherent 

sequence and for some 3,-tree T', so that t E T', T = T',. 

DEFINITION 3.6. Let (t~, T~), (t2, T2) be in ~(13, 3'). Then (t2, T:)=> (t,, T,) if 

there exists ~ E T~ so that 

(a) b. = b,~, 

(b) for every v E T2 

r1'~{3 ~ v ] 6 > max rl} is an element of T,, .  

In case t, = t2, let us call 02, T2) a Prikry extension (or P-extension) of (t,, T~) 

and write (t2, T2)>=p(tl, TI). 

Suppose that 3, <0o( /3)  . Define U(/3, 3', t) for a "),-coherent sequence t. 

Let W be some fixed from the beginning, wellordering of V~ s.t. for every 

inaccessible 3 < 

tWr V~: V ~ 3 ,  

where A is a cardinal large enough. 
Let (A~, I 3, '< /3+)  be the jo~(W)-least enumeration of all canonical ~ - n a m e s  

of subsets of /3. Using the inductive assumptions on ~ j ~ )  in N~, applying 

Lemmas 1.3 and 1.4, define a sequence of ~+~-names of elements of ~ j ~ / ~ + , ,  

(P~' J 3,' </3+), so that 
(1) for limit 3" </3+ 

lips, is the j~(W)-least E-extension for (p~,. I 3' ' '<  3")11 ~"*' = 1, 

(2) for every y ' < / 3  + 

I[ P~'+t is the j~(W)-least E-extension of p~, deciding "/3 E j~(A~,)" [ro*' = I. 

Now, for A C [3, A ~ V[G fq ~ ]  set A ~ U(/3, 3', t) if for some r ~ G fq ~ ,  

3 " < / 3 + , s o m e n a m e A o f A a n d a ~ - n a m e  T s o t h a t r U { ( i , T ) } E  N~ • ~ + ~ ,  in N v 

r U{([, T)} U pr, IF/3 Ej~(A). 

Suppose that for every /3 E dom~ 0 fq a the following holds. 

(A) For every 3,<0°(/3) ,  every "),-coherent sequence t, U(/3,3,,t) is a 

/3-complete ultrafilter extending U(13, 3")- 
(B) For every 3, '< 3,-<-0°(/3), every 3,-coherent sequence t, 

{3 </3 ] tn(6) is a ",/-coherent sequence} ~ U(/3, 7', t(3,')). 
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(C) For every 3, < 0t~(/3), every y-coherent sequences tl, t2, if b,, = b,,, then 

u ( / 3 ,  3`, t , )  = u ( / ~ ,  3`, t2). 
(D) ~(/3,0°(/3)) is the forcing notion used on /3. 

(E) ~(/3,0°(/3)) has the Prikry property, i.e. for every statement of the 

forcing language ~ and every condition (t, T) there exists a Prikry extension of 

(t, T) deciding or. 

Let us prove (A)-(C), (E) for a and use the forcing ~(a ,O°(a) )  over a. 

LEMMA 3.7. Let 3 , < 0 ° ( a ) .  Then 
(1) for every 3`'< 3, and a y-coherent sequence t, U(a, 3,',t) is equal to 

U(a, 3,', t) in the sense of N?,[G], 
(2) ~(a,  3') is the forcing used on a, in N;[GI .  

PROOF. (1) Let j~,:N~---~N~,~(N';)r~"~/j~(U(a, 3,)) and j,8: N;---~N,~-  
(N',~)~/U(a, 8) be the canonical elementary embeddings, for 6 < 3, < 0 e ( a )  • 

Then N,8 = N,s, =at N and the following diagram is commutative. 

V ) N~ 

N;  ~ N 

The first ordinal moved by j~ is j~(a). N~ N e '~N C_ N~. Hence 

j~,o ( j~(W)) l  V N = ja-~ (ja (W)) ]  V~,,,) = ja (W) ]  V N: 

Applying this for 8 = 0, we obtain that the minimal sequence (A~. I 3 '̀ < a *) ~ N~, 
is also such for N. 

Now let 6 = Y'. The forcing ~/~,(~is the same in N~., N~ since j,;,(a) = j~ , (a)  

and 

~j;,(~C V N~' = j~,(~,) V/,~.(~,). 

Hence U(a, 3,', t) in the sense ot N~[G] is U(a, 3,', t). 
(2) It follows from (1) and (C). [] 

Lemma 3.7 and (A), (B), and (C) for/3 < a imply (A), (B) and (C) for every 

3  ̀< 0 ° ( a )  so that 3, + 1 < 0 ° ( a ) .  So (A)-(C) holds if O°(a) is a limit ordinal. 

Suppose now that 0 ° ( a )  = 3, + 1 for some 3 .̀ 

LEMMA 3.8. For every ,,,-coherent sequence t, U(a, 3 ,̀ t) is an a-complete 
ultrafilter on a extending U(a, 3`). 
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PROOF. By Lemma 3.7 (2), the forcing on o~, in N ; [ G ] ,  is ~(oe, 3')- (D) in 

N.~[G] implies that ~(~ ,  3') has the Prikry property. The inductive assumptions 

(A), (B) and (C) in N~[G] imply that ~(c~, 3') is a oe-weakly closed forcing and, 

even more, if ((t, 'Z~)[~ < ~:'< ol) are conditions in ~(c~, 3') then {t, ne-e ,  Te) is 

also a condition in ~(c~, 3'). 

Now the proof is almost the same as the proof of Lemma 2.2. Just replace the 

membership in O(K, 0) by being a -/-tree. [] 

It is not hard to see that N{ U(o~, 3', t) I t is a 3,-coherent sequence} is a normal 
a+-saturated filter on c~. 

Notice, also, that if 3/= 0, then U(cq 0, ( )) is a normal ultrafilter. So we have 

proved (A) for 0e. Let us show (B). There remains only one case. 

LEMMA 3.9. For every 3/+ 1-coherent sequence t~{8 < a [ tN(8) is a 3, + 1- 

coherent sequence} ~ U ( cr, 3", t ( 3, ) ). 

PROOF. Notice that the nontrivial case is when the U-order of the maximal 

element of t is less than 3", since otherwise every 6 with 0 ° ( 6 )  = 3, will be O.K. 

Suppose r ~ G forces "t('~) is ,)-coherent". Then, in N~, r lkz, "t(,)) is 
-~-coherent" and, if 0C'(cr) = 3'+ 1 > 1, then r O{(t(3,), T)}lk¢,,~,"t(,~)n(~) is 

3,-i-1-coherent", for some 3°,~-name T of a 3"-tree with trunk t(3,). 

But then, by the definition of U(c~, 3", t(3,)), the set A = {8 < o~ [ 0cJ(~) = 3, and 

t(3,)~(6) is 3' + 1-coherent sequence} ~ U(o~, 3', t (7)) .  So, tn(8)  is 3' + 1-coherent 
for every 8 E A, since the maximal ~ E t - t(3,) (if there is any) has U-order 3"- 

[]  

Let us prove (C). As above, it is enough to prove the following. 

LEMMA 3.10. For every 3,-coherent sequence h, t: if b , ,=b ,~ ,  then 

U(,~, 3", t,) = u ( ~ ,  3", t~). 

PROOF. Let A C_ o~ be in V[G].  If A E U(o~, 3', t~) (i = 1,2), then for some 

r E G ,  3,'<c~ + and a ~,,-name T~ so that rU{(~,T~)} N," E~,,+~,  in N~, r U  
{({, 7],)} U P,, Ik ~ E j.~(A). Let A ~ U(o~, 3', t,). Pick some r'>= r, r ' ~  G forces 

"b,, = b,] ' .  (D) in N~ implies that the forcing used on c~ is ~(o~, 3'). Set 

T2={t2~{a ~ v 16 > maxt2}] v E T,}. 

Then T2 is a 3,-tree. Since for every 6 < 3', U(o~, 6, h(a)) = U(a,  6, t2(6)), by 

the inductive assumption (C), in N; .  Notice that b , l ~  ) ----- b,2(~), since by (D) for 

/3 < c~ bt~ consists of {:'s with 00(,~:)<0°(/3). 

Hence (t:, T2) is a condition in ~(~ ,  3')- But its strength is the same as (t~, T~), 

i.e. (t2, 7"2) ~ (h, r l)  and (t,, T1) = (t2, "/'2). 
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Then 

r' U {(/2, T2}} U pv, Ik dr E j~(A ). 

U(cr, 7, t2)D U(o~, 3/, tl), but they are ultrafilters. So 
[] 

So A E U(o¢ 7, t2). Hence 

U(a, 7, t,) = U(a, % t2). 

It remains to prove (E). 

LEMMA 3.11. ) ( a ,  OU(o~)) has the Prikry property. 

PROOf. Let (t, T)e ) (ce ,0° (c~) )  and cr be a statement of the forcing lan- 

guage. 

For "O E T, 6 < 7 w.l.o.g., let every/3 E Sucr.~ ('O) have [Q-order 6, where as in 

3.4 

Suc~(,7)= U Suc,,~(n). 

So every Suc~:~ ('0) E U(a, 6, "0(6)). Each U(a, 7, t) is an a-complete ultrafiler 

On O~. 

Let us shrink T level by level to an 0°(a)- tree T* with the trunk t so that for 

every v E T*,  6 <0°(c~), /3 ~ S u c , . ~ ( v )  if for some T' 

then 

(vn(/3), T')lk'~r 

(v°(/3), To~<,~)tr-' o- 

and for every /3' ~ SucT.~ (v) 

(vn(/3'), TvT~ ~)Ik'~r 

where i E 2 ,  ~cr-= ~r 1~r-------~tr and 

Tv*~<0> = { v ' ~  T* j v' extends vn(/3)}. 

We claim that (t, T*) decides tr. Otherwise, some (t',, T'3 >=(t, T*) forces ~o" 

(i @ 2). Let us pick such (t'~, T'3 so that I t'~- t] is the minimal possible. We are 

going to show that t'~ = t. It will imply the contradiction, since then (t, T'I F) T[~) is 

in ~(c t ,0°(a) )  and is stronger than both (tl, TI) and (t[~, T[~). 

Let us prove that t[, = t. The proof of t', = t is similar. Suppose that t[~# t. Then 

t[j = tnv~(/3). Assume for simplicity that v = ( ). Let /3 ESuc~r**(t) for some 

6 < 0 ° ( a ) .  Then 
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and so for every /3' ~ SucT. ~ (t) 

( t D ( / 3 ' } ,  T t n ( e , ) ) } 1 -  131". 

CLAIM 3.11.1. For every 8', 0 ° ( a ) >  /5'_-> 8, every / 3 '~Sucr .  a,(t), 
(tn(/3'), T,*n<t~,,)iF or. 

PROOF. Fix /5', 6 < / 5 ' <  0° (a ) .  It is enough to find one /3 'E SucT.~,(t) s.t. 
:# 

(t°(/3'),  T,n~e ~)IF or. 

Let A = SucT. ~,(t). Then A E U(a,/5', t(/5')). So for some r E G, a /5'-tree T 

with trunk t(/5') and 7 ' <  a +, in N~.[G] 

r u {(i(/5'), T~} U p~ ~F,~ ~ j;(A). 

Notice than the forcing on a in N:.[G] is ~(a,/5') .  

Since /5'>/5, Suc~,~(t(/5'))E U(a,&t(/5)). Hence there exists some /3 
Suc~-~ (t(/5')) fq Suc:m8 (t). Then (t(6')n(/3}, T,~,)~<e>} >= (t(/5'), T} and hence, in 

N~,[G] for some r' @ G, r' > r, 

r 'U  {([(/5')n</3), T,,,p(e>}} U p, IF & ~j; , (A) .  

So A E U(a,/5', t(/5')~(/3)). Let, then,/3'  E A D Suc~. ~,(t°(/3)). Clearly, there 
¢ $ 

is such since (t~(/3})(;5 ') = t(/5')~(/3). The condition (t~(/3, [3 ), T,,,<e,e.>) is stronger 

than the condition (tn(/3), T,*~(~>) forcing or. On the other hand, /3 ~ be,. So 
b,n<e'> = b,°<z.e,>. (C) implies then that for every /5" < 0 c ( a ) ,  

u(,~,  ~", (t~q3'))(/5")) = u(,~,/5", (t~(/3,/3'))(/5")), 

since, clearly, b(,~<e,>)~.. ) = b(,~e.e,>)~,, ). Define TI = {v - (/3)} v E T,*'(~.e,>}. Then T~ 
is an 0° (a )-tree. So ( t~( /3 ' ) ,T , )E~(a,O°(a))  and it is the same as 

(t~(/3,/3'), T,o~e,e,~). Hence, (t~(/3'), T~) forces o-. Then, also, (t~(/3'), T, (q T,*(e,~) 

forces or. So (t~(/3'), T,*<~,)) forces or, by the choice of T*. [] of the claim 

CLAIM 3.11.2. For every 8' </5, every /3' E Sucr. ~,(t), (tn(/3'}, T,*%3,~)IF or. 

PROOF, Fix /5 '<& It is enough to find some /3'~SucT.~,(t)  s.t. 
(in(~3'}, T,"<.,>} IF or. 

Let B = Sucr..~(t), Then for some r ~ G, 8-tree T with trunk t(/5) and 

7 ' <  a*, in N;[G] 

r U {(i'(/5), T)} U p~, IF ~ ~ j';(B). 

Let us define an 0c'(a)-tree T** with a trunk t which will be a natural 

intersection of T* with T. 
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Set T** = {tn(r~ . . . . .  r , - , )  E T* l if i < n is maximal s.t. for  every  j =< i 

0 ° ( r i ) <  8, then t(6)n(ro . . . .  , r~) E T}. 

Let  / 3 'E  Sucr..,~,(t). Suppose that (t~(/3,), T n(~,>)~z (r. Pick 

** = T *  (tn(/3 ', ro . . . .  , r,-1), T,) >= (tn(/3'), T,n<~,> forces --7 o'. W.l.o.g. T~ , <~, ........... ~. 

Le t  i < n  be maximal s.t. for  every  j<=i, 0 u ( h ) < &  Then  t * =  

t(6)~(/3 ', ro . . . .  , r,) ~ T. Pick some r '_-  > r, r ' E  G forces (t*, T,.) E ~ ( a ,  6). Then  

r ' u  {(t*, T,,)} U p'~lF ~ ~ j~(e). 

Hence  B E U(a,  8, t*). Pick some /3 E B M Sucr,~(tn(/3 ', ro . . . .  , r~)). Then  

= b n  '~ and for every  6 " < 0  u ( a )  b t n ( t 3 )  t ( t3 ' .ro. . . . . r~) (/3> 

bo~(/~>)(6,, ) = b(tn(~,.~.o,...,r~>n(~))(,v,). 

Define T2 = {v -{( /3 ' ,  ro . . . .  , r,)} I u E T,*(~, .......... ,)}, 

)1 * T~ = {u~(/3 ' , r o , . . . , r ,  u E T,n<~>}. 

(C) implies that T2 is an 0~ (a ) - t r e e  with a t runk t~(/3',ro . . . . .  r,,/3). Then  

(t~(/3',ro . . . .  ,r~,/3), T2) is equivalent  to (t~(/3), T,*(~>) in ~ ( a ,  0~(a ) ) .  Hence  

r'l t (t (/3 , to  . . . . .  r, , /3), T2)IF~. 

So also (t~(/3 ' , t o , . .  r , , /3) ,  T2 f3 * ., T,o<~, ........... ~>) IF o- 

By Claim 3.11.1, we can rep lace /3  by any /3"E SucT. a,,(t~(/3 ', r0 . . . .  , r~)) for 

6" > & But it is impossible, since (tn(/3', r o , . . . ,  ro ,), T,~(~,. ............ >) IF --1 o~ and, if 

i < n - 1, O°(r,~) >= 6. Contradict ion.  [ ]  of the claim 
[ ]  

This completes  the proof  of condit ions (A)- (D)  for a. We defined O~ to be 

~ ( a , 0 ° ( a ) ) .  Set ~ . ~  = ~ * Q , .  For  every  /3 _<-0c~(a), the forcing not ion 

~ ( a , / 3 )  has the Prikry p roper ty  and it is an a -weak ly  closed. So if t8 _-< 0 ° ( a )  is a 

cardinal (it does not mat ter  whether  in V or in V[G]  since they have the same 

cardinals), then the forcing with ~ ( a , / 3 )  over  V[G]  changes the cofinality of 

to cofVlcl(/3) without  adding new bounded  subsets to a. 

Mitchell [Mi 2] constructed a model  with a+-sa tura ted  normal  filter over  a 

concentra t ing on singular cardinals of cofinality 6 (for 6 < a) .  Such filters can be 

defined in V[G] ,  provided  that 6 is a regular 'card ina l  of V, 6 ~ d o m ,  0 and 

0°(a)> 6. 

o ~ = N { U ( a ,  8, t) l t is a & c o h e r e n t  sequence} 

will be such a filter. In case 3 = w  just 0 ° ( a ) > 1  is enough,  since o%= 
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O{U(a, l , t ) l  t is a 1-coherent sequence} is a+-saturated concentrating on 

cofinality to. 

If 0 c : ( a ) = a ,  then we can define ~=("l{U(a,  7, t)['),<O°(a), t is a 7- 

coherent sequence}, f f  will be a+-saturated normal filter and for every /3 < a 

the set {6 < a I cof~tcl(6) = cof~IGl(/3)} will be o~-positive. 

§4. The precipitousness of the nonstationary ideal 

Let us describe first how to construct a model with NS. (the non-stationary 

ideal over K) precipitous over an inaccessible K. Start with a measurable cardinal 

K of the Mitchell order •. Pick a coherent sequence [~ of length l ° = K + 1 and 

with 0c'(K) = K. Let ~K be the forcing notion defined in §3 for 0. Let G be a 

generic subset of ~ .  Then every A ~ N,,<K U(K, c~) will be a fat subset of K in 

V[G] (i.e., for every club C C_ K, A n C contains closed sets of ordinals of 

arbitrarily large order-types below K). So, by Avraham-Shelah [A-S] it is 

possible to shoot a club through A without adding new bounded subsets of K. 

The problem starts when we try to iterate such forcing. We shall apply ideas of 

[G 2]. We need to have a generic club through A n a inside V[G], for a lot of 

a ' s  below K. In order to obtain it, we shall change cofinalities of both a, a + to to. 

In [G 2] we used a variant of the Namba forcing. Here we like to preserve 

cardinals. A strongly compact Prikry forcing will be used. 

Assume G.C.H. Let 0 be a coherent sequence as above. Assume, in addition, 

that U(K,0) concentrates on a++-strongly compact cardinals o~. For U(K,O) 
concentrating on a +-super-compact cardinals the proof we are giving works as 

well. Let us change slightly the definition of ~ of §3. Let 

A = {~ < K I ~ ff dom~/], ~ is an c~ ++-strongly compact cardinal}. 

Then A ~ U(K, 0). W.l.o.g., we can assume that for every a @ domi 0,  A fh a C 

U(c~,0). To obtain it just shrink the domain of 0 enough. For every a @ A fix 

some fine measure U(a) over ~,~(a ++) so that in the ultrapower by U(a), 
I[id] u,,~, [ = a ++ 

We shall use the forcing of the kind of §§1-3 for the coherent sequence O. 

Just, in addition, let us change cofinalities of every a, a+ to to for a in A. So we 

define by induction the iteration ~,~ for c~ E the closure of {/3 I/3 ~ A U dom~ D 

or/3 = 7 + 1 and 7 E A U dOml O}. Suppose that ~ ,  is defined and a E A. Let 

(A~ I/3 < c~ ++) be the W-least enumeration of all canonical ~o-names of subsets 

of 3~v(a*). Let 
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be the canonical elementary embedding. In N there exists a set B cardinality 

c~ +÷= I[id]l so that for every /3 < o~ ÷*, j(A~)EB. 
Pick in N ~'*' the j(W)-least ~,+l-name of p E ~ j~) /~+ ,  deciding all the 

statements "j(&+)G [id] E b" for b in B. It exists by Lemma 1.2. In case a 

a+-supercompact, define an a++-sequence of 3°, .~-names of elements of ~j~,) /~ 

deciding all the statements j"(a +) Ej(A~) (/3 < a ~ ) ,  as was done in Lemmas 1.5 

and 2.2. 
Let G be a generic subset of ~,~. Define now a fine ultrafilter O(a)  over 

~ (o~ +) in V[G] as follows. Set C ~ / . ) ( a ) ,  if C C ~ ,  (a+) and, in N ~°, 

lip IF J(~+) o [id]u,~ E j(C)ll*" ~ G, 

in case ) ,+ t / ) , ,  = Q, or if ~,~+1/~,, # Q and for some T s.t. (Q, T) G ),,~ l/~,,, 

II {<O, T)} U p IF j (~ +) n lid] t,(., E j (C)I} '<' E G. 

The checking that such defined 0(c~) is a fine ultrafilter is as in Lemmas 1.5 

and 2.2. Now let Q be the strongly compact Prikry forcing with 0(c~). 

Conditions in O~ are of the form <O1,.. . ,  O,, B), where (O1 . . . . .  O,) is an 

increasing sequence of elements of ~ ( ( ~ )  and B is a tree of increasing 

sequences of elements of ~,~ (c~ +) so that O,, is contained in every element of 

such a sequence and for every r / E  B, Such (r/) E 0(c~). The forcing notion O,~ is 

o~-weakly closed, has the Prikry property, and changes cofinalities of both c~ and 

c~ + to o~. We refer to [P], [G 1] for detailed information on such forcing notions. 

Define )~, = ~,, * Q,,. 

Now, for a Edom~ U, define ~,+1 as in §3; just to extend U(a,0) use 

conditions in the strongly compact Prikry forcing with empty finite sequence. 

This extension will no longer be a normal ultrafilter, but its normality was not 

used in §3. 
Fix now a generic subset G, of ~ , .  Set G, = G~ O 3~,~. Then every G~ will be a 

V-generic subset of ~,~. Let E E n~<~ u(K,/3). Set for 3' < K 

E(7)={/3~ElO°(Ci)>=yandEn¢ 1E n U(13,~r)} • 
o ' <  3 , 

For every/3 ~ E(y), bo, the generic sequence to/3, is almost contained in E O/3. 

The order type of bo is => 3'. The set E(y) is in U(~, 3') and, in particular, it is 

stationary. Notice that, since ~ satisfies ~-c.c., by Baumgartner [B] every club 

of ~ of V[G,] contains a club of g of V. So, if a set is a stationary subset of ~ in 

V it is still stationary in V[G.]. The same holds if we replace ~ by c~ ~ A U 

dom, U. 
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Set E ' = { a < K l a  is a measurable in V for every y < a ,  E ( y ) N a  is a 

stationary subset of a}. 

Then E '  ~ No<,  U(K,/3). It is not hard to see that for every a E E '  U {K}, 

E n c~ is a fat subset of c~ in V[GI, i.e. for every club C C_ a, E n C contains 

closed sets of ordinals of arbitrarily large order-type below oe. Define by 

induction the following sets: 

E o = { o e E E N E ' I ~ E A } ,  for/3, 1_-__/3 ~ K, 

E~ = {ce E E N E'IO°(c~) =/3 and for every 6 </3, Ea N ~ @ U(~, 6)}. 

Then each E~ is in U(K,/3). Set E "~ = U{Eo I/3 < K}. 
Let a EE" )U{K} .  Define P [ E N a ]  to be the forcing notion in V[G~] 

consisting of all closed subsets of E N a and ordered by endextension. 

LEMMA 4.1. For every a E E  °) there exists a V[O~]-generic subset of 
PIE n a] in V[G~,<]. 

PROOF. If a E Eo, then the strongly compact Prikry forcing was used on a 

and col a + = col a = to in V[G~+,]. Also, there is no new bounded subsets of a 

in V[G~<]. Since E N a is a fat subset of a, the forcing PIE N a]  is an 

(a,~)-distributive forcing notion in V[G~]; see [A-S]. Now the set of all dense 

subsets of P[E N a]  which are in V[G~] can be written in V[G~<] as a union of 

to sets; each of them is in V[G~] and has cardinality less than a. Then using the 

distributivity of PIE N a] ,  we can define a set meeting all dense subsets of 

P[E N c~] of V[G~]. 
Suppose now that for every y </3 < K, C~ E Ev, the lemma is proved. Let us 

prove it for/3. So, let a ~ E~ . We would like to find a V[Oo]-generic subset of 

P[E n a ]  in V[G~+~]. Consider the generic sequence b~ to c~. For some ~ < a, 

b ~ - s  c will be contained in every E~ N c, (6 </3).  Denote  b ~ - s  c by b. Let 

(Ye 1 ~: < r)  be the increasing continuous enumeration of b. Define by induction 

an increasing continuous sequence of closed sets (Ce I~ < r)  so that 

(1) q E V[Gv~<] is a V[Gv~]-generic club through E n ye, 

(2) Ce+, is an endextension of Ce, 

(3) for a limit s ¢, Ce = U{Ce, I~'< ~}. 
Define Ce+~ using the inductive assumption. Let  us show for a limit ~:, 

q = U{q, [ U <  ~} is V[Gd-gener ic .  

Let D be a dense open subset of P[E n ye] in V[G,,]. Then for some ~' < ~, 

D n P[E n ye,] will belong to V[G,~.] and it will be a dense subset of P[E n ye,] 
in V|G,~]. Since ~,~ satisfies ye-c.c., (Ye" I (  ' <  ~:) is almost contained in every 
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club of 3,t and for (3 < 3,t the forcing ~ / ~  does not add new bounded subsets 

to (3. The C~, extends some element of D n P[E  N 3,~]. Hence C~, U{3,e} 

belongs to D. So also C~ extends an element of D. Hence C~ is a V[G~]- 
generic club. It completes the induction. [] 

E m E No<,  U(K,/3). Replace now E by E w in the definition of Em. Denote 
(E")) m by E {2). 

For a E E (2) U {K} let P(~)[E N ,~] be a set of all pairs (Co, C,) so that Co, C, are 

closed subsets of E, Co_D G and for every /3 E C,, C , n / 3  is a V[G~]-generic 

subset of P[E N /3]. 

LEMMA 4.2. For every a E (Era)o, Pm[E N a] is an (a, o@distributive forcing 
notion in V[ G,, ]. 

PROOF. Let /3 < c~ and (D~ { I /< /3)  be a sequence of dense open subsets of 

P(')[E N a] in V[G~]. There exists a closed unbounded subset C E V of a so 

that for every v ~ C 

N~ = (V,,[a~], E ,  ~ , E  N v, (/), 13' < v))<(V,,[G,~],E,~,,E n a,(D~ 13,< v)). 

Since ~,, satisfies a-c.c, and a is a measurable in V, a E (E(~))0, hence 

(Era)(/3) N a is stationary. 

Pick 3, E (E"))(/3) N {~ I ~: is a limit point of C}. Then b, (the generic sequence 

to 3,) has order type _->/3, and starting from some place (3 < 3' is contained in the 

club C N 3, intersected with E" )N 3,, which is a stationary subset of 7. 

Let ( /3e]~</3) be the increasing continuous enumeration of the first /3 
members of by - (3. 

Define in V[G~+,] a sequence (q~ ] v </3)  so that 

(1) q~ C P°'[E n/3,.+,1 n V[G.~+,], 
(2) q. = (Co, C,) and max C,~ =/3~ for i = O, 1, 

(3) G+~@D,,, 
(4) q~+, = q~. 

Consider first the successor stage. Inside N~. ,  find some q'~-_> q~, q' .E D~. 

Since /3~+~ E E m by Lemma 4.1 there exists q~.~ => q'. satisfying (2). 

Let now v be a limit ordinal. Set q~ = (G~, C,~) where C~ = U ~<o G~, u {/3~} 

for i = 0, 1. As in Lemma 4.1, such defined Co~ will be a V[G~.]-generic club of 

P[E n/3,.]. Hence q. ~ Pm[E N/3.+,]. 

It completes the definition of (q. [ v </3).  

Set q = (Co, C~), where G = U ~  G. u {U{/3~ I ¢ </3}} for i = 0,1. Then 

q E A~<~D~. [] 
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LEMMA 4.3. For every a ~ E (2) there exists a VIGil-generic subset of 

P~')[E fq ~] in V[G~+,]. 

The proof is as that of Lemma 4.1; just use Lemma 4.2 for nonlimit stages. 

It is possible to prove even more. 

LEMMA 4.4. Let a E E ~2~ and let CoG V[(3~+~] be a V[G~]-generic club of 

E fq a defined as in Lemma 4.1. Then there exists a club C, E V[G,,+~] so that the 

set {(Co, c~) I c~ is an initial segment of C~ for i = 0, 1} is a VIGil-generic subset of 

P~')[E N er]. 

PROOF. Suppose first a C(EC2~)o. Then in V[G~+,], (a+) v = U~,oB~ where 

each B~ E V[G] and I B~ IVl~J < a. 

Clearly, P~'}[E n a]  -~ PIE n a ] .  O for some (a, oo)-distributive forcing no- 

tion O. The forcing with PIE  n a] preserves cardinals. So we can represent the 

set of all dense subsets of O of V[G~, C~,] as a union of eountably many sets each 

belonging to V[G~, C0] and of cardinality less than a. Hence, it is possible to 

construct a V[G~, G,]-generic subset of O in V[G~.,]. Just use the sequence 

(B,:  n < w )  and that (a+)v=(a+)  v[G°'c'']. Hence there exists a club C , ~  

V[G~+~] that satisfies the claim of the lemma. 

Let now a E E <2)- (E(2))o. Then as in Lemma 4.1, generic using the generic 

sequence b~, we construct the union of generic clubs that will satisfy the claim of 

the lemma. [] 

Using Lemmas 4.1-4.4, the continuation of the construction became the 

routine translation of [G 2} to our case. We leave the details to the reader. 

To construct the model with NS,+ precipitous, for some regular p,, we do not 

need really a coherent sequence on K of the length K. A coherent sequence of 

length p. + 1 is enough. Just after the forcing with 3~ collapse ~: to p,+ using the 

Levy collapse. Every E E fqo<. u(~,a)will then be a fat subset of /~+. Now 

apply the arguments of Lemmas 4. l-4.4 and [G 2]. 

§5. NS~ IS saturated for S containing all the cofinalities 

Assume G.C.H. L e t / ]  be a coherent sequence of the length I c, = K + 1 so that 

0°(K) = K and U(K,0) concentrates on a+-supercompact cardinals. 

As in Section 4, let 

A = {or < K ] a E dom, I], a is an ~ +-supercompact cardinal}. 

Then A E U(K,0) and w.l.o.g, for every c~ Edom~ f], A A o~ E U(c~,0). For 

o~ E A fix a normal measure U(c~) over Y',, (c~+). 
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Let us define now the preparation forcing notion ~K. Basically ~ will be as in 

Section 4 but, in addition, we shall add a+-Cohen subsets to o~, for every 

inaccessible a below ~. 

Define by induction the interation ~ for a E the closure of {/3 < K I/3 is an 

inaccessible or 13 =3 '  + 1 and 3' is an inaccessible}. Let us concentrate on 

successor stages. For limit stages we refer to §§1-3. So, suppose ~ is defined 

and a is an inaccessible. Define ~+1. 

Case 1. a ~ A U d o m l  

Let C (a  +) = {f E V ~o If  is a partial function from a+ x a into {0, 1}, I f lv ' t  < 
o~}, i.e., the forcing for adding a+-Cohen subsets to c~. 

Set ~,+1 = ~ * C(a  +). 

Case 2. a ~ A 

In this case we shall first add c~+-Cohen subsets of c~, then define a fine 

ultrafilter over ~ ( c~  +) and use it to change cofinalities of c~, a + to to. Let 

{A, 1/3 < c~++) be the W-least enumeration of all canonical ~ * C(c~+)-names of 
subsets of v + ~ ( a  ). Let 

j" V--* N = V~"(~+)/U(cO 

be the canonical elementary embedding. Let G~ be a generic subset of ~,, and G 

be a V[G~]-generic subset of C(a*).  In NIG~ * G] pick some q E C((j(a+)), 
q D_ j"(G). 

j ( ~ , .  • c ( ,~+) ) :  ~' * c ( ~  +) * 0 • O', 

where C(a+)*  O is the forcing used on K in N and O ' =  ~j(,,~* C(j(ol*))/~,,,t. 
Now using Lemma 1.2, define in V[G,, * G] ° an E-increasing sequence 

(Po I/3 < a++) of E-extensions of q so that in N[G,, * G] ° 

p~+~ IFo. j"(c~ +) ~ j (a~) for every 13 < c~ +~ 

Define now a fine ultrafilter U ( a )  extending U ( a )  in V[G,, * G] as follows. 

Set C ~ O(c~), if C _C ~,, (o~ +) and for some /3 < c~ ++, r ~ G,, * G, in N 

r IF:,,,.c,, *, (Po IFo, j"(& +) E j(C)) 

in case O = Q ,  or if O / Q ,  then for some T s.t. (Q, T) E O 

r~(Q, T)IF:~,,+, (Pt, IFo, j"( d~ +) ~ j( C)). 

The checking that such defined U ( a )  is a fine ultrafilter is as in Lemmas 1.5 and 

2.2. 
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Let, as in §4, O~ be the strongly compact Prikry forcing with / ] (a )  in 

V[G, * G]. Define ~+1 to be ~ ,  *(C(a+)* O~). Notice that the forcing 

C(a+)* Qo is isomorphic to the following forcing notion, Q = {(t, q, T) I t E V is 

a finite sequence, q G C(a+), q IF(/, T ) ~  O~}. O is clearly a-weakly closed and 

has the Prikry property. 

Case 3. a E d o m ,  

Force first with C(a  +) and then define 3°~.~ as in §3. The additional arguments 

needed here are really contained in case 2. ~+~ will be 

~ * (C(a+)* ~ ( a , 0 ° ( a ) ) .  As in case 2, C(a+)* ~(a,O°(a)) is isomorphic to 

a-weakly closed forcing satisfying the Prikry condition. 

Let 

S = {a E dom, 0 I for some/3, 0 </3 < K, O°(a) =/3 +/3}. 

Then S E i"}o<~<K U(K,/3 +/3). Denote by S o the set {a E S [0° (a )  =/3 +/3}, 

for 0 </3 < K. Clearly every S~ is a stationary subset of K. Let GK be a generic 

subset of ~ . .  Then every S~ remains stationary in V[G~], since ~ satisfies 

K-c.c. Also, for every regular cardinal /z < K of V[G], every a E S~ has 

cofinality /z in V[G]. 
We shall define a generic extension of V[G.] in which the filter 

r)o<t~<~ u(K,/3 +/3) extends to the closed unbounded filter restricted to S. 

Notice that K - S is a fat subset of K, in V ~-. Since for every regular/z < K, a < K 

with O°(a) =/z  a closed unbounded subset of the generic sequence b~ is disjoint 

from S. So, by [A-S], the forcing notion P[K -- S] (see §4 for the definition) is 

(K, oo)-distributive. We shall use Woodin's trick first to destroy a stationary set 

and then to shoot clubs avoiding its subsets by closed forcing. The forcing 

P[K -- S]* C(K +) will destroy S and add clubs avoiding subsets of S. We shall 

embed P[K--S]*C(K +) into the forcing notion C(K+)*g~(K,a) for every 

a < K. Namely, we shall show how to pick in V ~**c<*÷)*~'~) a V~'*c<*+J-generic 

subset of P[K- S]. Notice that 

P[K - S]* C(K +) = C(K +)x PIK- S]. 

Set S' = {a < K l in V, a is a measurable and for every y < a {/3 < a I 0°(/3) => 

y} is a stationary subset of a}. Then S 'G  N~<. U(K,/3) and for every a E 

S'U{K}, a - S  is a fat subset of a in V[G~], where Go = G ,  r h ~  for some 

fixed generic subset G, of ~K. Define by induction the following sets: 

S(O)={aES ' ta~A}  for/3, 0</3_-<K; 

S(/3) = {a E S'lO°(a) =/3 and for every 6 </3, S(6) (3 a E U(a, 6)}. 
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Set S* = U~<~S(/3). Then S* E n~<~ U(K,/3). Let G(a+) = G~ N C(a  +) for 

every a E S*. 

LEMMA 5.1. For every a E S* there exists a V[ G~ * G(a*)]-generic subset of 

P [ a -  S] in VIG~+I]. 

PROOF. Note first that for a E S*, a - S  is a fat subset of a in 

V[G,, * G(a+)], since a - S is fat in VIGil  and the forcing C(a +) is a-closed. 

By [A-S] the forcing P [ a -  S] is an (a, oc)-distributive forcing notion in 

V[G~ * G(a+)]. 

If a E S(0), then the strongly compact Prikry forcing was used on a and so 

co fa  = c o f a + = ~ o  in V[G~+,]. There is no new bounded subsets of a in 

V[G~+~]. Then, as in Lemma 4.1, there exists a V[G~ * G(a+)]-generic subset of 

P [a  - S] in V[G~+~]. 

Suppose now that for every ~ </3 < K, a E E~ the lemma is proved. Let us 

prove it for/3. Consider the generic sequence b~ to a. Clearly, d, = b~ - S will 

be closed unbounded in a. Pick some {~ < a so that d~ - ~: is contained in every 

S ( 8 ) N a  (8</3) .  Denote d , -~ :  by d. Let (7~1~: < r )  be the increasing 

continuous enumeration of d. 

Define by induction an increasing continuous sequence of closed sets 

(c~ I~: < r) so that 

(1) c~ E VIG,~+,] is a VIG,~* G(y;)]-generic club through "/e - S, 

(2) ce+~ is an endextension of % 

(3) for a limit ~, ct = U{ce, ] ~:' < ~:}. 

We define ce+~ using the inductive assumption. Let us show that for a limit ~:, 

ce = U{ct. I ~:'< ~:} is V[G,~* G(~/_~)]-generic. Let D ~ V[G,~* G(7;)]  be a 

dense open subset of P [ y e - S ] .  Then for some r/<(7~)I 'q~'~l=(7~) ~, 

D ~ V[G,~* G(~,~)[ nl, where G(7~)[ r/ are r/-first Cohen generic subsets of 

7~, since P[7.~- S] is a set of cardinality 7e- Denote by C(r/) the forcing for 

adding ,/-Cohen subsets to 7e. Let us assume for simplification of the notations 

that ~/= 3't. Otherwise just use an appropriate coding of r /by  a subset of 7~. By 

the choice of ultrafilters U(yt, v, t) (v < 0c~(3,e), t a v-coherent sequence) 

{a < 3'e [ (G(7e ) [a )Na  = a ( a + ) r a } ~  U('re, v,t). 

Then starting with some ~ ' <  ~, d will be contained in this set. For the same 

reason, for some ¢*, ¢' _-< ¢* < ~, for every ~", ~j* _<- ~"<  ~:, 

D ffl P [ 7 c -  S] E V[G,c * G(7~--)] 

and it is a dense subset of P[vr-S]. Then c,e extends some element of 
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D N P[Yc - S]. So, c~v U {7e'} belongs to D. Hence, also % is an extension of 

an element of D. So c~ is a V[G~]-generic club. It completes the induction. [] 

For y < K, denote by j~ the canonical elementary embedding of V into 

N • ~ V~/U(K, y). 

Applying kemma 5.1 to K in N ~ we obtain the following. 

LEMMA 5.2. Let y < K, G~+~ be a generic subset of ~+~ over NL Then in 

N~[G~+,] there exists a V[G~ * G(K+)]-generic subset of P[K - S]. 

For a forcing notion P let us denote by RO(P) the complete Boolean algebra 

of regular open subsets of P. 

LEMMA 5.3. For every T < K ,  R O ( P [ K - A ] * C ( K + ) )  is isomorphic with a 

complete subalgebra of RO(C(K+)* ~(K, y)). 

PROOF. In N ~ the forcing used on K is C(K+)* ~(K, y). Let G(K+)* G' be a 

V[G~ ]-generic subset of C(K +) * ~(K, y). By Lemma 5.2, in V[G~ * G(K *) * G'] 

there exists a V[G~ * G(K ~)]-generic subset G" of P[K - S ] .  Then G"* G(K ÷) 

will be a VIGil-generic subset of P[K - S] * C(K *). [] 

Further, we shall identify P [ K - S ] *  C(K ÷) with subalgebras of 

C(K+)* ~'(K, a)  isomorphic to it. 

We are now ready to define the main forcing. It will be a subordering of 

P[K - S l * C(K*). 
Work in V[G. 1. Let X be the set of all P[K - S ] *  C(K+)-names a of pairs 

(p, a )  so that a < K, p E P[K - S] * C(K +) and if (p,, a) ,  (p2, a )  E a, p, ~ p2 then 

p~, p2 are incompatible. Clearly, every subset of K in V[G. ] el~-sl*c~*+~ has a name 

in X. Since P [ K - S ] *  C(K +) satisfies K+-c.c., the cardinality of X is K +. Let 

(a, l a < K ~) be an enumeration of X such that every a E X appears K*-many 

times. Let also a0 = S. 

Define by induction sequences (B,, I a < K+), (P~l 6 < K +, T = Y' + Y' for some 

T ' , 0 < T ' < K ) ,  ( q ~ ) 6 < K  +, y = T ' + T '  for some T ' , 0 < y ' < K )  so that 

(1) (B~ l a < K +) is an increasing sequence of complete subalgebras of 

P[K - -  S] * C(K +), 

(2) for every 31 s.t. 

E-increasing sequence 

(3) for every 7 s.t. 

a p[j~(K - S)]-name 

stronger than q~',. 

7 = 7 ' + 7 '  for some 3 " , O < 7 ' < K ,  ( P ~ I S < K  ÷) is an 
of elements of 

* C(~+)* ~(~,  y ) ) / ~  * C(~+)* ~(~,  r) ,  

7 = y ' +  y' ,  for some 7', 0 < 3" < K, for every 8 < K +, q~ is 

of an element of B~. For & < 82 < K +, q~2 is forced to be 
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Set B , , ~ O ,  p ~ = O ,  q~'=O. Let B , = R O ( P [ ( K - S ) U S ] ) ,  p ] ' = O .  

Define q ~'. B, is naturally embeddable into RO(P[K - S] * C(K+)). We identified 

RO(P[K - S] * C(K+)) with the complete subalgebra of RO(C(K+)* ) (K,  y)). So 

in N ~ [G~ ]~, jr (~,) /G~ we have the canonical name G(B~) of a generic subset of 

B~. Set 

q~'= U G(BL)U {K} U {minG(P[j~(K - S ) ] ) -  K}, 

where G ( P [ j ~ ( K -  S)]) is the canonical j ~ ( ) , ) - n a me  of a generic subset of 

P [ j ~ ( K  - s)]. 
Before turning to the general case, let us do one more step and define B2, p'S, 

q~. Consider a,. If a~ is not a B,-name, then set B2 = B,, p ;  = p~( and q~ = q~. 

Suppose now that a~ is a Brname .  For every 3' = Y' + Y', 0 < y '  < K, let t] ~ be a 

P [ j ~ ( K -  S)]-name of an element of j~(B~) above q~' deciding the statement 

"K Ej~(a~) ''. Let also I,_J t~ • c G(P[j~(K - S)]). Pick p~' to be an E-extension of 

p, forcing "q~ It-(K Ej~(a , ) )  '' or "t] ~ II-(K~j~(a~)) ''. It exists by Lemma 1.4. 

Notice that we identify P [ j ~ ( K - S ) ]  with a complete subalgebra of 

C(j~(K+))* ~P(j~(K), y). It does not matter here which embedding we pick. 

Moreover,  C(j~(K+))* ) ( j~ (K) ,  y)  can be replaced by any other forcing includ- 

ing P[j~(K - S ) ]  and satisfying the Prikry condition. 

If for some y = y ' +  y' ,  0 <  3" < K, 

then set B2 = B~, q~' = t~ ~. 

Suppose otherwise, i.e. for every 2/= Y' + Y', 0 < 2/' < K, 

Then set B2 = B, * RO(P[(K - S) U a~]). B2 is embeddable into 

RO[P(K - S] * C(K+)) by an embedding extending the embedding of B,, since 

after the forcing with P [ K -  S], B~, B2 became K-closed forcing notions of 

cardinality K and hence they are isomorphic to the Cohen generic subsets of K. 

Set 

q~ = (~t ~, U G(P[(K - S) t_J a,]) tO {K} U {rain G(P[j~ (K - S ) ] ) -  K}), 

where G(P[ (K-S) t_JaL])  is the canonical name of a generic subset of 

P[(K - S )  U a l l .  

Let us give now the definitions in general case. Let ~ < K + and below a 

everything is defined. For successor ordinal a the definitions are as in the case 

a = 2. Suppose now that a is a limit ordinal. Set B~ to be the direct limit of 
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(B~ I/3 < ~) if c o f a  = K, or B~ = the inverse limit of (B~ I/3 < c~) if cofc~ < K. 

Notice that C(K +) is isomorphic to the iteration of Cohen subsets of K with 

< K-support, i.e. the direct limit, for c o f a  = K, and the inverse limit for 

col ct < K. So B~ (a  < K+) will be embeddable into RO(P[K - S]*  C(K ~)) by an 

embedding extending the embeddings of B~'s for /3 < a. Let y = y '  + y '  for 

some y' ,  0 < y '  < K. Set P~ a name of the E-extension of (P~I/3 < c~). It exists by 

Lemma 1.2. Finally, set q~ = the coordinate union of (q~]/3 < ct). Then q~ will 

be a P[j~(K-S)] -name of an element of B~, since for every / 3 < a ,  

max q~E G ( P [ j ~ ( K -  S)]) which is a closed unbounded subset of P[j~(K - S ) ]  

and q~ is allowed to enter j~(K - S ) .  It completes the definition. 

Set B to be the direct limit of (B~ l a < K*). Let G ( B )  be the VIGil-generic  

subset of B. Let  U* = {x ~ ~(K)~IC'~*c"R~t 1 for some c~ < K +, for some ~ * B- 

name x of x, for every y = y ' +  y ' ,  0 <  y ' <  K, 

LEMMA 5.4. U* is the closed unbounded .filter over K restricted to S. 

PROOF. Let us show first that U* contains the closed unbounded filter over K 

restricted to S. Let  x C K be such that for some club C C  K, x N S_D S A C 

There  exists a < K + so that x, C C V[G~ * G(B,) ] ,  where G(B~)= G ( B ) N  B, ,  

since B is a complete subalgebra of RO(C(K +) * P[K - S]) satisfying K+-c.c. But 

then 

Hence x C U*. 

Suppose now that x E U*. Then for some a < K ÷, X @ V[G~ * G(B~)]. Let 

/3 > a be such that 

Then for some 6 =>/3, Bs+~ = B~ * P[(K -- S )  U x] .  Hence S N x contains a club 

intersected with S in V[G~ * G(B~)]. [ ]  

LEMMA 5.5. U* is the K+-saturated.filter in V[G, * G(B)] .  

P~ooF. The set S ~  U* and S is the disjoint union of S,'s, where y = 

y ' +  y' ,  0 <  y ' <  K, S, = { a  < ~ 10°(a)  = y}. It is enough to show that for every 

~/= "y'+ "y', 0 <  ~/'< K, 

U*r& ={x CK I(& ~x)U(K-S~)~ U*} 
is K÷-saturated. 
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Let us fix 7. Suppose x C K is a U* [ S<positive set. Pick some a < K + so that 

x E V[G~ * G(B,,)] and a~ is a B~-name of (S, - x ) U ( K  - S ) .  Then for every 
a # 3 `  

Since S~ - x ~ U* f S~, 

Hence for every U*[S, -pos i t ive  set x there exists a condition t~ 

C(K+)* ~(K, 3`)/G(B) and a < K + so that 

t~ = I[ P~ IF- (q ~ IF- ~ E jr (x))1] c(~)*~`~')/c''m. 

If x~, x2 are U* r S~-positive and x~ N x2 is not U* [ S-positive then t~,, t~, are 

incompatible. The forcing C(K+)* ~(K, 3`) /G(B) satisfies K+-c.c. Hence U* I S 

is K +-saturated. [] 

LEMMA 5.6. For every 3  ̀= 3,'+ ¢ ,  0 <  3`'< K, S~ remains stationary in 

ViG • G(B)]. 

PROOF. Suppose that for some 3  ̀there exists C C_ K club C A S~ = O. Pick an 

c~ < K + so that C E  V[G~ * G(B~)]. Then, in N~[G~ * G(B~)] 

q~l}- (~ Ej'(C)Nj'(S,)andj~(C)Nj'(S,)=~) 

which is impossible. [] 

THEOREM 5.7. In V[G~ * G(B~)], NS, [S  is K+-saturated and for every 

regular a < K, S (3 {/3 < K I cf/3 = O~} is stationary. 

Added in proof. 

1. S. Shelah [S] defined a generalization of the iteration of §1 which it is 

possible to use for small cardinals. 

2. It is impossible completely to remove the assumptions on U0 in Theorem 

I, but it is possible to replace them by some which do not even require ::IK 

o ( K ) =  K ++ 

3. It is possible to drop the assumption that U0 is concentrated on a +- 

supercompact cardinals a in Theorem II. The idea is to start with a coherent 

sequence (Uo [a  < K) so that Uo is a non-minimal Q-point  and Uo (a > 0) is 

normal. By [G 3] it is possible to obtain such from a measurable. Let U; <=RK Uu 

be normal. Pick A ~ C K  which belongs to U o - U ~  and does not belong to 
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I,.)o . . . .  U~. Let S be as in the proof of the theorem. For most a's  in A~'~ force 
w i t h P [ a  S]*  ÷ - ' - C (a  ). For o~ E K Ao force as in §5. By the choice of A0, Uo 

extends to a K-complete ultrafilter U~. U* will still be O-point since the forcing 

satisfies K-c.c. Then every Prikry sequence for U* is almost contained in any 

club of K. So it is possible to pick a generic subset of P[c~ - S ]  as in §5. It is 

possible to iterate the forcing notions P [a  - S ]  preserving the cardinals by the 

choice of S. 
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